Triangles et parallèles/Théorème de Thalès
Sur l'utilité des différents énoncés du théorème de Thalès
- Le théorème direct de Thalès sert à calculer des longueurs.
- Le théorème réciproque sert à démontrer que deux droites sont parallèles.
- La contraposée du théorème sert à démontrer que deux droites sont sécantes.
Le théorème direct de Thalès
Si, dans les figures suivantes, les droites (DE) et (BC) sont parallèles.
|
Configuration « triangle » |
Configuration « papillon » |
alors il y a proportionnalité dans le tableau :
| Petites Longueurs | AD | AE | DE |
| Grandes Longueurs | AB | AC | BC |
Exemple dans la configuration « triangle »
Si AB = Modèle:Unité, AD = Modèle:Unité et AE = Modèle:Unité. Calculer AC.
il y a proportionnalité dans le tableau :
| Petites Longueurs | AD = 2 | AE = 3 | DE |
| Grandes Longueurs | AB = 5 | AC = ? | BC |
le coefficient de proportionnalité est : donc
Exemple dans la configuration « papillon »
Si AB = Modèle:Unité, AD = Modèle:Unité et AE = Modèle:Unité. Calculer AC.
il y a proportionnalité dans le tableau :
| Petites Longueurs | AD = 2 | AE = 2,5 | DE |
| Grandes Longueurs | AB = 3,5 | AC = ? | BC |
le coefficient de proportionnalité est : donc
Remarques
- Il faut que le point pivot A apparaisse quatre fois dans les deux premières colonnes du tableau.
Nous expliquons en approfondissements pourquoi on déconseille aux élèves de troisième d’utiliser les longueurs BD et EC dans leur tableau de proportionnalité.
- On peut énoncer le théorème direct de Thalès avec des rapports de longueurs.
La réciproque du théorème de Thalès
Version « triangle »
Soient les points A, B, C, D, E.
- Si les points A, D et B sont alignés dans cet ordre.
- Si les points A, E et C sont alignés dans cet ordre.
- Si l'égalité des rapports suivants est vraie : .
Alors on est dans une configuration "triangle" et les droites (DE) et (BC) sont parallèles.
De plus, les trois rapports suivants sont égaux : .
Exemple
Si A, D et B sont alignés dans cet ordre.
Si A, E et C sont alignés dans cet ordre.
avec AB = Modèle:Unité, AD = Modèle:Unité, AE = Modèle:Unité et AC = Modèle:Unité.
alors en appliquant cela :
et d’après la réciproque du théorème de Thalès, on est dans une configuration "triangle" et les droites (DE) et (BC) sont parallèles.
De plus, on a :
Version « papillon »
Soient les points A, B, C, D, E.
- Si les points D, A et B sont alignés dans cet ordre.
- Si les points E, A et C sont alignés dans cet ordre.
- Si l'égalité des rapports suivants est vraie : .
Alors on est dans une configuration "papillon" et les droites (DE) et (BC) sont parallèles.
De plus, les trois rapports suivants sont égaux : .
Exemple
Si D, A et B sont alignés dans cet ordre.
Si E, A et C sont alignés dans cet ordre.
Avec AB = Modèle:Unité, AD = Modèle:Unité, AE = Modèle:Unité et AC = Modèle:Unité.
alors en appliquant cela :
et d’après la réciproque du théorème de Thalès, on est dans une configuration "papillon" et les droites (DE) et (BC) sont parallèles.
De plus, on a : .
Remarque
L'important ici est que les deux triplets de points soient alignés dans le même ordre. On pourrait donc résumer ces deux versions en une seule. Mais il n'y aurait plus moyen de savoir dans quelle configuration on se trouve.
Contraposée du théorème de Thalès
Exemple
Dans la figure ci-dessous, démontrer que les droites (PM) et (BE) sont sécantes.
Liens
Animations
Exercices interactifs
- Mathenpoche, voir en 3Modèle:E, chapitre de géométrie sur le théorème de Thalès
Sur les différents théorèmes de Thalès
- Géométrie affine/Exercices/Thalès, Ménélaüs, Ceva et Desargues#Exercice 4-1
- Sur Wikipédia : un bon article sur le théorème de Thalès (mais de niveau assez élevé)
- En Suisse, le théorème est principalement approché grâce à la « petite propriété de Thalès » française. Le « théorème de Thalès suisse » exprime par contre la hauteur dans un triangle rectangle. [1]
- Article de Wikipédia sur un théorème différent mais appelé théorème de Thalès dans les pays anglo-saxons : c’est le théorème du triangle rectangle inscrit dans un cercle, vu en quatrième et troisième.
- Dans le triangle, le [[../Théorème des milieux|théorème des milieux]] est un cas particulier du théorème de Thalès.