Recherche:Techniques de régressions au plus près/Fonctions régressives Fi communes de base

De testwiki
Aller à la navigation Aller à la recherche

__EXPECTED_UNCONNECTED_PAGE__ Modèle:Chapitre

Fonctions régressives Fi communes de base

Dans les approches B et C

Fonctions paires pour partie paire

Fonctions régressives de base paires
Type F(x)
Degré
Monôme Cosinus
trigonométrique
Tangente
trigonométrique
Cosinus
hyperbolique
Tangente
hyperbolique
Exponentielle Construite
avec f(x)
0
1
-1
1 1cos(ωx)
1cos1(ωx)
1cos(ωx1)
1cos1(ωx1)
1cos(ωx2)
1cos1(ωx2)
tan(ωx2)
tan1(ωx2)
tan(ωx2)
tan1(ωx2)
1cosh(ωx)
1cosh1(ωx)
1cosh(ωx1
1cosh1(ωx1)
1cos(ωx2)
1cos1(ωx2)
tanh(ωx2)
tanh1(ωx2)
tanh(ωx2)
tanh1(ωx2)
1exp(ωx2)
1exp1(ωx2)
1exp(ωx2)
1exp1(ωx2)
F(x)=f(0)f(x)
si x>0
ET
F(x)=f(0)f(x)
si x<0
2 x2
x2
1cos2(ωx)
1cos2(ωx)
1cos2(ωx1)
1cos2(ωx1)
tan2(ωx)
tan2(ωwx)
tan2(ωx1)
tan2(ωx1)
1cosh2(ωx)
1cosh2(ωx)
1cosh2(ωx1)
1cosh2(ωx1)
tanh2(ωx)
tanh2(ωwx)
tanh2(ωx1)
tanh2(ωx1)
1exp2(ωx)
1exp2(ωx)
1exp2(ωx1)
1exp2(ωx1)
F(x)=f(0)f2(x)
si x>0
ET
F(x)=f2(0)f2(x)
si x<0
n
m
x2n
x2n
1cosn(ωx)
1cos(ωxm)
1cosn(ωxm)
tan2n(ωx)
tan2n(ωx)
tan2n(ωxm)
1coshn(ωx)
1cosh(ωxm)
1coshn(ωxm)
tanh2n(ωx)
tanh2n(ωx)
tanh2n(ωxm)
1expn(ωx2m)
1expn(ωx2m)
F(x)=f(0)fn(x2m)
si x>0
ET
F(x)=fn(0)fn(x2m)
si x<0
général m,n m,n m,n m,n m,n m,n m,n
Fonctions régressives composées paires

À FINIR 3 premières cellules faites

Type
MonômeAVEC
Sin
Cos
Sinh
Cosh
Tan
Tanh
Exp

x2l/2l+1×sin2m/2m+1(ωx)
XXXXXXXXXXXXXXXXXXXXXXXX
x2l/2l+1×sinh2m/2m+1(ωx)
XXXXXXXXXXXXXXXXXXXXXXXX
x2l/2l+1×tan2m/2m+1(ωx)
x2l/2l+1×tanh2m/2m+1(ωx)
XXXXXXXXXXXXXXXXXXXXXXXX

x2l×sinm(ωx2)
x2l×cosm(ωx2)
x2l×sinhm(ωx2)
x2l×coshm(ωx2)
x2l×tanm(ωx2)
x2l×tanhm(ωx2)
x2l×expm(ωx2)

x2l×sin2m(ωx)
x2l×cosm(ωx)
x2l×sinh2m(ωx)
x2l×cosm(ωx)
x2l×tan2m(ωx)
x2l×tanh2m(ωx)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

x2l+1×sin2m(ωx2n+1)/x2l+1×sinm(ωx2n)/x2l×sin2m+1(ωx2n+1)
x2l+1×cos2m(ωx2n+1)/x2l+1×cosm(ωx2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
x2l+1×sinh2m(ωx2n+1)/x2l+1×sinhm(ωx2n)/x2l×sinh2m+1(ωx2n+1)
x2l+1×cosh2m(ωx2n+1)/x2l+1×coshm(ωx2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
x2l+1×tan2m+1(ωx2n+1)/x2l+1×tanm(ωx2n)/x2l×tan2m+1(ωx2n+1)
x2l+1×tanh2m(ωx2n+1)/x2l+1×tanhm(ωx2n)/x2l×tanh2m+1(ωx2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX /x2l+1×expm(ωx2n)/ XXXXXXXXXXXXXXXXXXXXXXXXXXXX
SinusAVEC
Sin
Cos
Sinh
Cosh
Tan
Tanh
Exp

sin(ω1x)×sin2m(ω2x)
sin(ω1x)×cosm(ω2x)
sin(ω1x)×sinh2m(ω2x)
sin(ω1x)×coshm(ω2x)
sin(ω1x)×tan2m(ω2x)
sin(ω1x)×tanh2m(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

sin(ω1x2l+1)×sinm(ωx2)
sin(ω1x2l+1)×cosm(ωx2)
sin(ω1x2l+1)×sinhm(ωx2)
sin(ω1x2l+1)×coshm(ωx2)
sin(ω1x2l+1)×tanm(ωx2)
sin(ω1x2l+1)×tanhm(ωx2)
sin(ω1x2l+1)×expm(ωx2)

sin(ω1x2l)×sin2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
sin(ω1x2l)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
sin(ω1x2l)×tan2m+1(ω2x)
sin(ω1x2l)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

sin(ω1x2l+1)×sin2m(ω2x2n+1)/sin(ω1x2l+1)×sinm(ω2x2n)/sin(ω1x2l)×sin2m+1(ω2x2n+1)
sin(ω1x2l+1)×cos2m(ω2x2n+1)/ω1sin(x2l+1)×cosm(ω2x2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
sin(ω1x2l+1)×sinh2m(ω2x2n+1)/sin(ω1x2l+1)×sinhm(ω2x2n)/sin(ω1x2l)×sinh2m+1(ω2x2n+1)
sin(ω1x2l+1)×cosh2m(ω2x2n+1)/sin(ω1x2l+1)×coshm(ω2x2n)/ XXXXXXXXXXXXXXXXXXX
sin(ω1x2l+1)×tan2m(ω2x2n+1)/sin(ω1x2l+1)×tanm(ω2x2n)/sin(ω1x2l)×tan2m+1(ω2x2n+1)
sin(ω1x2l+1)×tanh2m(ω2x2n+1)/sin(ω1x2l+1)×tanhm(ω2x2n)/sin(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX/sin(ω1x2l+1)×expm(ω2x2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cos AVEC
Cos
Sinh
Cosh
Tan
Tanh
Exp

XXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x)×tan2m+1(ω2x)
cos(ω1x)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×sinh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×tan2m+1(ωx2)
cos(ω1xl)×tanh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×tan2m+1(ω2x)
cos(ω1xl)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

​ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x2l+1)×sinh2m+1(ω2x2n+1)/cos(ω1x2l+1)×sinh2m+1(ω2x2n)/cos(ω1x2l)×sinh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x2l+1)×tan2m+1(ω2x2n+1)/cos(ω1x2l+1)×tan2m+1(ω2x2n)/cos(ω1x2l)×tan2m+1(ω2x2n+1)
cos(ω1x2l+1)×tanh2m+1(ω2x2n+1)/cos(ω1x2l+1)×tanh2m+1(ω2x2n)/cos(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cosh AVEC
Sinh
Cosh
Tan
Tanh
Exp

cosh(ω1x)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1x)×tan2m+1(ω2x)
cosh(ω1x)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

cosh(ω1xl)×sinh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1xl)×tan2m+1(ωx2)
cosh(ω1xl)×tanh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX

cosh(ω1xl)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1xl)×tan2m+1(ω2x)
cosh(ω1xl)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

cosh(ω1x2l+1)×sinh2m+1(ω2x2n+1)/cosh(ω1x2l+1)×sinh2m+1(ω2x2n)/cosh(ω1x2l)×sinh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1x2l+1)×tan2m+1(ω2x2n+1)/cosh(ω1x2l+1)×tan2m+1(ω2x2n)/cosh(ω1x2l)×tan2m+1(ω2x2n+1)
cosh(ω1x2l+1)×tanh2m+1(ω2x2n+1)/cosh(ω1x2l+1)×tanh2m+1(ω2x2n)/cosh(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Tan AVEC
Tan
Tanh
Exp

tan(ω1x)×tan2m(ω2x)
tan(ω1x)×tanh2m(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

tan(ω1x2l+1)×tan2m+1(ωx2)
tan(ω1x2l+1)×tanh2m+1(ωx2)
tan(ω1x2l+1)×expm(ωx2)

tan(ω1x2l)×tan2m+1(ω2x)
tan(ω1x2l)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

tan(ω1x2l+1)×tan2m+1(ω2x2n+1)/tan(ω1x2l+1)×tan2m+1(ω2x2n)/tan(ω1x2l)×tan2m+1(ω2x2n+1)
tan(ω1x2l+1)×tanh2m(ω2x2n+1)/tan(ω1x2l+1)×tanh2m+1(ω2x2n)/tan(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Tanh AVEC
Tanh
Exp

tanh(ω1x)×tanh2m(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

tanh(ω1x2l+1)×tanh2m+1(ωx2)
tanh(ω1x2l+1)×expm(ωx2)

tanh(ω1x2l)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

tanh(ω1x2l+1)×tanh2m(ω2x2n+1)/tanh(ω1x2l+1)×tanh2m+1(ω2x2n)/tanh(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXtan(ω1x2l+1)×expm(ωx2)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Construite
Approchée
Fonctions composées par 2 paires

AJOUTER TABLEAU DES COMBINéS

Fonctions impaires pour partie impaire

Fonctions de base
Type F(x)
Degré
Monôme Sinus
trigonométrique
Tangente
trigonométrique
Sinus
hyperbolique
Tangente
hyperbolique
Exponentielle Construite
avec f(x)
0
1
-1
x
x1
sin(ωx)
sin1(ωx)
sin(ωx1)
sin1(ωx1)
tan(ωx)
tan1(ωx)
tan(ωx1)
tan1(ωx1)
sinh(ωx)
sinh1(ωx)
sinh(ωx1)
sinh1(ωx1)
tanh(ωx)
tanh1(ωx)
tanh(ωx1)
tanh1(ωx1)
eω|x|
si x<0
ET
eω|x|
si x>0</math>
F(x)=f(x)
si x>0
ET
F(x)=f(x)
si x<0
3 x3
x3
sin3(ωx)
sin3(ωx)
sin3(ωx1)
sin3(ωx1)
tan3(ωx)
tan3(ωx)
tan3(ωx1)
tan3(ωx1)
sinh3(ωx)
sinh3(ωx)
sinh3(ωx1)
sinh3(ωx1)
tanh3(ωx)
tanh3(ωx)
tanh3(ωx1)
tanh3(ωx1)
(eω|x3|
si x>0
ET
eω|x3|
si x<0
F(x)=f2(x)
si x>0
ET
F(x)=f2(x)
si x<0
2m+1
2n+1
x2n+1
x(2n+1)
sin2n+1(ωx2m+1)
sin(2n+1)(ωx2m+1)
tan2n+1(ωx2m+1)
tan(2n+1)(ωx2m+1)
sinh2n+1(ωx2m+1)
sinh(2n+1)(ωx2m+1)
tanh2n+1(ωx2m+1)
tanh(2n+1)(ωx2m+1)
eω|x2m+1|
si x>0
ET
eω|x2m+1|
si x<0
F(x)=fn(x2m+1)
si x>0
ET
F(x)=fn(x2m+1)
si x<0
général m,n m,n m,n m,n m,n m,n n
Fonctions régressives composées impaires
Règles :

Tableau des parités d'un produit à à faire

Type Degré
i/p/i
Degré
i/i_p/p
Degré
p/i/i
Degré
ipi/i-p/pii
MonômeAVEC
Sin
Cos
Sinh
Cosh
Tan
Tanh
Exp

x2l+1×sin2m(ωx)
x2l+1×cos2m(ωx)
x2l+1×sinh2m(ωx)
x2l+1×cosh2m(ωx)
x2l+1×tan2m(ωx)
x2l+1×tanh2m(ωx)
XXXXXXXXXXXXXXXXXXXXXXXX

x2l+1×sinm(ωx2)
x2l+1×cosm(ωx2)
x2l+1×sinhm(ωx2)
x2l+1×coshm(ωx2)
x2l+1×tanm(ωx2)
x2l+1×tanhm(ωx2)
x2l+1×expm(ωx2)

x2l×sin2m+1(ωx)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
x2l×sinh2m+1(ωx)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
x2l×tan2m+1(ωx)
x2l×tanh2m+1(ωx)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

x2l+1×sin2m(ωx2n+1)/x2l+1×sinm(ωx2n)/x2l×sin2m+1(ωx2n+1)
x2l+1×cos2m(ωx2n+1)/x2l+1×cosm(ωx2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
x2l+1×sinh2m(ωx2n+1)/x2l+1×sinhm(ωx2n)/x2l×sinh2m+1(ωx2n+1)
x2l+1×cosh2m(ωx2n+1)/x2l+1×coshm(ωx2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
x2l+1×tan2m+1(ωx2n+1)/x2l+1×tanm(ωx2n)/x2l×tan2m+1(ωx2n+1)
x2l+1×tanh2m(ωx2n+1)/x2l+1×tanhm(ωx2n)/x2l×tanh2m+1(ωx2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX /x2l+1×expm(ωx2n)/ XXXXXXXXXXXXXXXXXXXXXXXXXXXX
SinusAVEC
Sin
Cos
Sinh
Cosh
Tan
Tanh
Exp

sin(ω1x)×sin2m(ω2x)
sin(ω1x)×cosm(ω2x)
sin(ω1x)×sinh2m(ω2x)
sin(ω1x)×coshm(ω2x)
sin(ω1x)×tan2m(ω2x)
sin(ω1x)×tanh2m(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

sin(ω1x2l+1)×sinm(ωx2)
sin(ω1x2l+1)×cosm(ωx2)
sin(ω1x2l+1)×sinhm(ωx2)
sin(ω1x2l+1)×coshm(ωx2)
sin(ω1x2l+1)×tanm(ωx2)
sin(ω1x2l+1)×tanhm(ωx2)
sin(ω1x2l+1)×expm(ωx2)

sin(ω1x2l)×sin2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
sin(ω1x2l)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
sin(ω1x2l)×tan2m+1(ω2x)
sin(ω1x2l)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

sin(ω1x2l+1)×sin2m(ω2x2n+1)/sin(ω1x2l+1)×sinm(ω2x2n)/sin(ω1x2l)×sin2m+1(ω2x2n+1)
sin(ω1x2l+1)×cos2m(ω2x2n+1)/ω1sin(x2l+1)×cosm(ω2x2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
sin(ω1x2l+1)×sinh2m(ω2x2n+1)/sin(ω1x2l+1)×sinhm(ω2x2n)/sin(ω1x2l)×sinh2m+1(ω2x2n+1)
sin(ω1x2l+1)×cosh2m(ω2x2n+1)/sin(ω1x2l+1)×coshm(ω2x2n)/ XXXXXXXXXXXXXXXXXXX
sin(ω1x2l+1)×tan2m(ω2x2n+1)/sin(ω1x2l+1)×tanm(ω2x2n)/sin(ω1x2l)×tan2m+1(ω2x2n+1)
sin(ω1x2l+1)×tanh2m(ω2x2n+1)/sin(ω1x2l+1)×tanhm(ω2x2n)/sin(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX/sin(ω1x2l+1)×expm(ω2x2n)/XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cos AVEC
Cos
Sinh
Cosh
Tan
Tanh
Exp

XXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x)×tan2m+1(ω2x)
cos(ω1x)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×sinh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×tan2m+1(ωx2)
cos(ω1xl)×tanh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1xl)×tan2m+1(ω2x)
cos(ω1xl)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

​ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x2l+1)×sinh2m+1(ω2x2n+1)/cos(ω1x2l+1)×sinh2m+1(ω2x2n)/cos(ω1x2l)×sinh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cos(ω1x2l+1)×tan2m+1(ω2x2n+1)/cos(ω1x2l+1)×tan2m+1(ω2x2n)/cos(ω1x2l)×tan2m+1(ω2x2n+1)
cos(ω1x2l+1)×tanh2m+1(ω2x2n+1)/cos(ω1x2l+1)×tanh2m+1(ω2x2n)/cos(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cosh AVEC
Sinh
Cosh
Tan
Tanh
Exp

cosh(ω1x)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1x)×tan2m+1(ω2x)
cosh(ω1x)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

cosh(ω1xl)×sinh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1xl)×tan2m+1(ωx2)
cosh(ω1xl)×tanh2m+1(ωx2)
XXXXXXXXXXXXXXXXXXXXXXXXXXXX

cosh(ω1xl)×sinh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1xl)×tan2m+1(ω2x)
cosh(ω1xl)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

cosh(ω1x2l+1)×sinh2m+1(ω2x2n+1)/cosh(ω1x2l+1)×sinh2m+1(ω2x2n)/cosh(ω1x2l)×sinh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
cosh(ω1x2l+1)×tan2m+1(ω2x2n+1)/cosh(ω1x2l+1)×tan2m+1(ω2x2n)/cosh(ω1x2l)×tan2m+1(ω2x2n+1)
cosh(ω1x2l+1)×tanh2m+1(ω2x2n+1)/cosh(ω1x2l+1)×tanh2m+1(ω2x2n)/cosh(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Tan AVEC
Tan
Tanh
Exp

tan(ω1x)×tan2m(ω2x)
tan(ω1x)×tanh2m(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

tan(ω1x2l+1)×tan2m+1(ωx2)
tan(ω1x2l+1)×tanh2m+1(ωx2)
tan(ω1x2l+1)×expm(ωx2)

tan(ω1x2l)×tan2m+1(ω2x)
tan(ω1x2l)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

tan(ω1x2l+1)×tan2m+1(ω2x2n+1)/tan(ω1x2l+1)×tan2m+1(ω2x2n)/tan(ω1x2l)×tan2m+1(ω2x2n+1)
tan(ω1x2l+1)×tanh2m(ω2x2n+1)/tan(ω1x2l+1)×tanh2m+1(ω2x2n)/tan(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Tanh AVEC
Tanh
Exp

tanh(ω1x)×tanh2m(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXX

tanh(ω1x2l+1)×tanh2m+1(ωx2)
tanh(ω1x2l+1)×expm(ωx2)

tanh(ω1x2l)×tanh2m+1(ω2x)
XXXXXXXXXXXXXXXXXXXXXXXXXXX

tanh(ω1x2l+1)×tanh2m(ω2x2n+1)/tanh(ω1x2l+1)×tanh2m+1(ω2x2n)/tanh(ω1x2l)×tanh2m+1(ω2x2n+1)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXtan(ω1x2l+1)×expm(ωx2)XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Construite
Approchée

Dans les approches A et C

Modèle:Bas de page