Racine carrée/Quantité conjuguée
Définition
Soit une expression de la forme :
On appelle quantité conjuguée (ou expression conjuguée) de cette expression par rapport à , l'expression obtenue en remplaçant par .
C'est-à dire :
Si aucune confusion n'est possible, c'est-à-dire s'il n'y a qu'une racine carrée, on dira simplement quantité conjuguée.
Principale propriété
On a la propriété suivante :
Rationalisation des numérateurs et des dénominateurs
Une application importante du paragraphe précédent est de faire disparaître une racine d'un numérateur ou un dénominateur d'une fraction. L'usage le plus fréquent est de faire disparaître une racine d'un dénominateur. Nous verrons pourquoi au paragraphe suivant.
Nous savons que nous ne changeons pas la valeur d'une fraction si l'on multiplie le numérateur et le dénominateur par une même expression non nulle. L'idée est donc de multiplier le numérateur et le dénominateur par une expression conjuguée de façon à faire disparaître une racine qui nous gène soit au numérateur, soit au dénominateur.
Application
La plupart des exercices concernant l'utilisation de la quantité conjuguée dans les fractions porte sur la rationalisation des dénominateurs. La raison se trouve dans le fait que lorsque l'on fait la somme (ou la différence) de deux fractions, on doit commencer par chercher un dénominateur commun et cette recherche sera grandement simplifiée s'il n'y a pas de racines aux dénominateurs.
Plutôt qu'un long discours, nous allons donner un exemple pour illustrer notre propos. Nous allons faire, de deux manières différentes, la somme de deux fractions ayant des racines aux dénominateurs. Dans la première, nous ignorerons les quantités conjuguées et dans la deuxième nous commencerons par faire disparaître les racines carrées des dénominateurs en utilisant les quantités conjuguées.