Fraction/Introduction

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Chapitre

Définition de base

Définition

Une fraction est une division, mais représentée sous la forme d’un nombre.
Elle s'écrit sous la forme d’un nombre, d’une barre horizontale et d’un autre nombre (la barre horizontale devant être au niveau du milieu des opérateurs).
Elle permet de faire des calculs sur ces divisions beaucoup plus facilement, mais aussi de représenter des nombres n’ayant pas de valeur décimale.
Exemple: 1÷3 peut être représenté sous la forme: 13

Exemple général

22=1

Dans cet exemple on sépare 2 en 2 ce qui nous donne effectivement 1.

La fraction est en fait 22 (que l’on peut aussi écrire 2/2). À noter qu’il existe des fractions plus complexes. Comme par exemple 2/2/2 … qui peut porter à confusion. C’est à ce moment là que le rédacteur tentera de simplifier avec des parenthèses selon l’ordre du calcul.

Ainsi, si l’on écrit : (2/2)/2, on obtiendra 1 ( car 2/2=1 ) divisé par 2, ce qui donne 1/2 (on dit « un demi »). Sans parenthèses, la priorité des opérations implique que l’on effectue le calcul dans cet ordre et il est préférable d'écrire sous la forme 222.

Par contre si l’on écrit : 2/(2/2), cela signifie 2 divisé par 2/2 soit 2 divisé par 1 or 2/1=2. Cela revient à écrire sous la forme 222

Il faut pour cela se référencer à la procédure de résolution de problèmes.

Numérateur

Le numérateur fait référence au nombre au-dessus de la barre de fraction. Dans l’exemple suivant :

42=2

Le numérateur est 4.

Dénominateur

Le dénominateur est le nombre sous la barre de fraction. Dans l’exemple suivant :

612=0.5

12 est le dénominateur.

À noter que le dénominateur ne doit jamais être égal à 0 puisque la division par 0 est impossible.

Prendre la fraction d’un nombre

Remarque : prendre trois quarts de 12 revient à multiplier 34 par 12, car :

34 de 12=3×14 de 12=3×3=9
34×12=0,75×12=9

On généralise :

Théorème : prendre la fraction d’un nombre revient à le multiplier par cette fraction

Remarque : l’ordre des opérations ne change rien ici.

3×124=364=9

34×12=0,75×12=9

On généralise par la règle :

Modèle:Théorème

Exemple : calculer deux tiers de 14 sous forme de fraction

23 de 14=23×14=2×143=283


Modèle:Bas de page