Dispersion des ondes/Paquets d'ondes

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Chapitre

Modèle:Clr

Vitesse de phase

Intéressons-nous tout d’abord à une onde plane progressive monochromatique de pulsation ω se propageant suivant le sens et la direction d'un vecteur u. Au point repéré par le vecteur position r et à l'instant t, son amplitude est de la forme: 𝒜=𝒜0ej(ωtkr) Intéressons-nous au terme de phase. Il est de la forme: φ=ωtkrk=2πλu représente le vecteur d'onde. Le nombre d'onde k est la norme du vecteur d'onde, soit: k=k=2πλu Pour simplifier les notations, on considérera dans tout le reste de ce chapitre la propagation unidimensionnelle suivant l'axe x vers les x positifs. Le terme de phase devient alors φ=ωtkx, et l'amplitude de l'onde devient 𝒜=𝒜0ej(ωtkx)

Modèle:Définition

Pour calculer cette vitesse de phase, on va tenir le petit raisonnement suivant :

  • Une surface équiphase vérifie φ=cste
  • Dans le cas d'une propagation suivant x, la vitesse de cette surface équiphase vérifie:

dφ=0d(ωtkx)=0=ωdtkdtkx dxdt=ωk Modèle:Encart

Dans ce cas d'une onde plane monochromatique, on retombe bien sur la relation démontrée et utilisée en acoustique ou en électromagnétisme. La vitesse de phase est alors aussi la vitesse de propagation de l'onde plane (voir animation ci-contre). Modèle:Clr

Paquet d'ondes

Si les ondes planes monochromatiques sont un sujet d'étude « facile » dans le sens où on peut rapidement en déduire de nombreuses propriétés, elles ne permettent malheureusement pas de rendre compte fidèlement des phénomènes réels. En effet, le modèle de l'onde plane mathématique monochromatique la représente comme une onde d'étendue infinie dans l'espace et dans le temps. Ce modèle n'est donc pas satisfaisant.

Dans la réalité, les ondes sont émises par « trains d'ondes » ou « paquets d'ondes ». Par exemple, un atome excité qui réduit son énergie en faisant passer l'un de ses électrons à un niveau d'énergie inférieur émet une onde électromagnétique, qui est bien sûr finie dans le temps (environ 109s) et dans l'espace.

C'est là qu'intervient la théorie de Fourier : tout train d'ondes peut s'écrire comme combinaison linéaire d'ondes planes progressives monochromatiques de pulsations ω différentes, donc de nombres d'onde k différents.

Pour plus de détails sur la transformée de Fourier et ses applications, se reporter au cours Série et transformée de Fourier en physique

Un train d'ondes peut donc s'écrire sous la forme d'intégrale de Fourier : Modèle:Encadre

Influence de la propagation

Calcul

C'est là que les choses se compliquent. Dans la plupart des milieux matériels, la vitesse de propagation des ondes électromagnétiques dépend de la fréquence. En d'autres termes, on peut écrire ω comme une fonction de k.

On suppose également que l'onde est « quasiment monochromatique » autour d'un nombre d'onde k0, de sorte qu'on puisse avec une bonne approximation faire un calcul à l’ordre 1 :

ω(k)=ω(k0)+(kk0)dωdk|k0

Remarque : Cette dernière considération peut se justifier par le principe d'incertitude de Heisenberg, qui relie l'extension spatiale du paquet d'onde à l'extension du spectre du paquet d'ondes dans l'espace des vecteurs d'onde.

En notant ω(k0)=ω0

𝒜(x,t)=+𝒜^(k)ej(ωtkx)dk=+𝒜^(k)exp[j(ω0t+(kk0)dωdk|k0tkx)]dk=+𝒜^(k)exp[j(ω0tx(kk0)k0x+(kk0)dωdk|k0t)]dk=ej(ω0tk0x)+𝒜^(k)exp[j(kk0)(dωdk|k0tx)]dk

On pose (x,t)=+𝒜^(k)exp[j(kk0)(dωdk|k0tx)]dk

D'où l’expression finale : Modèle:Encadre

Interprétation

représente la forme du paquet d'ondes dans le temps et dans l'espace.

En effet, dans son expression, on a une dépendance entre x et t : (x,t)=(dωdk|k0tx). On assiste donc à un phénomène de propagation de l'enveloppe de l'onde à la vitesse dωdk|k0

Modèle:Définition

Vitesse de groupe et vitesse de phase

On remarque alors que, a priori, dans le cas général, il n'y a aucune raison pour que vφ=vg.

Modèle:Principe

L'animation ci-dessous illustre l'influence de la différence de vitesse de propagation des ondes de fréquences différentes sur l'allure de la vibration propagée.

On y retrouve bien une structure en paquets d'ondes. Ces paquets d'ondes se déplacent à une certaine vitesse (la vitesse de groupe vg) tandis que la phase de la vibration se déplace à une autre vitesse (la vitesse de phase vφ). L'animation ci-dessous met en évidence la différence entre ces deux vitesses :

  • Les points verts se déplacent à la vitesse de groupe vg
  • Les points rouges se déplacent à la vitesse de phase vφ

La distinction est importante à faire et sera développée dans d'autres cours, qui parfois tirent avantageusement parti, parfois subissent les différences entre ces deux grandeurs, causées par la dispersion.

Dispersion des milieux

Modèle:Définition

En effet, dans un milieu non dispersif, ω=kvφ et vg=dωdk=vφ.

Milieu non dispersif

vφ=vg

Milieu dispersif

vφ=vg

Cas des signaux de grande étendue spectrale

On a fait dans ce dernier paragraphe l'hypothèse d'une onde quasiment monochromatique, ce qui n'est souvent pas suffisant dans la réalité. Dans un milieu dispersif où toutes les fréquences ne se propagent pas à la même vitesse, une plus grande étendue spectrale amène à une plus grande déformation du paquet d'ondes sur de grandes distances, posant le problème de la reconstitution du signal initial à la réception.

La problématique de la transmission des ondes électromagnétiques dans des milieux dispersifs est fondamentale dans les applications d'aujourd'hui, notamment car un guide d'ondes se comporte comme un milieu dispersif.

Toutes ces considérations seront approfondies dans le cours sur les ondes électromagnétiques guidées.

Modèle:Bas de page