Diagramme de Bode/Fonction de transfert
Notion de filtre linéaire
Certains systèmes physiques réagissent à une excitation (électrique, matérielle...) en suivant un mouvement éventuellement atténué, éventuellement déphasé (c'est-à-dire décalé dans le temps). Dans de nombreux cas, on appelle de tels systèmes des « filtres », pour des raisons historiques.
Parmi tous les filtres, certains ont, pour un signal donné, une réponse proportionnelle à l'excitation : ce sont des filtres « linéaires ». Ainsi, lorsque l'excitation est un signal sinusoïdal, la « sortie » du filtre est directement proportionnelle à l' « entrée ». Pour prendre en compte le déphasage éventuel, nous travaillons en notations complexes.
Par leur diversité et l’intérêt prépondérant qu’ils exposent, dans cette leçon, nous étudierons pour l'essentiel les filtres électriques linéaires, qui mettent en jeu des composants comme les résistances, les condensateurs...
Système étudié
Par convention, on prend toujours les intensités dans le sens entrant dans le quadripôle, en entrée comme en sortie.
Le but de ce cours est d’étudier la réponse du quadripôle à un signal d'entrée sinusoïdal. La théorie de la transformation de Fourier permet alors de déduire de cette étude le comportement du quadripôle face à n’importe quel signal.
Dans tout ce cours, on utilisera la notation complexe pour les grandeurs physiques sinusoïdales. La tension d'entrée V₁ sera ainsi sous sa forme complexe : , où j est le nombre tel que et où ω est la pulsation du signal d'entrée.
