Géométrie symplectique/Géométrie symplectique linéaire
L'étude des formes bilinéaires symétriques donne lieu à la géométrie euclidienne, la géométrie riemannienne et la géométrie pseudo-riemannienne. Au contraire, l'étude des formes bilinéaires alternées donne lieu à la géométrie symplectique. Ce cours a pour objectif d'introduire les principales définitions et les propriétés élémentaires des formes symplectiques, en commençant par une première étude en algèbre linéaire.
Rappels d'algèbre linéaire
Espace vectoriel symplectique
La non-dégénérescence signifie exactement que le noyau de ω est nul, ou encore, que ω réalise un isomorphisme linéaire .
- Remarque : L'existence d'une forme symplectique implique que la dimension de V soit paire. Ce fait sera établi par la classification des formes symplectiques donnée ci-dessous.
En particulier, les transformations canoniques d'un espace symplectique dans lui-même forment un sous-groupe du groupe des isomorphismes linéaires de V, noté . On reviendra sur l'étude de ce groupe.
L'exemple suivant est fondamental :
C'est essentiellement le seul espace symplectique de dimension 2n, du moins à isomorphisme linéaire près. Ce point est démontré dans la section suivante. Cependant, l'isomorphisme n’est pas unique. En pratique, la manière dont se présente un espace symplectique joue un rôle important. D'autres exemples d'espaces symplectiques souvent utilisés seront donnés après la classification.
Classification
Rappelons le résultat suivant :
Appliquons ce résultat d'algèbre linéaire réelle au cas d'une forme symplectique ω. Comme ω est non dégénérée, le noyau est nul (donc r = 0). Le théorème précédent donne l’existence d'une base avec 2k la dimension de V. On en déduit que :
- La dimension d'un espace symplectique est paire.
De plus, l'application qui à v associe ses coordonnées dans la base est visiblement symplectique pour la forme symplectique usuelle sur . D'où :
- En dimension 2n, il n'existe à isomorphisme près qu'un unique espace vectoriel symplectique.
Exemples
Structure complexe
En fait, tout espace vectoriel symplectique peut être obtenu comme dans l'exemple 4. Plus exactement, toute forme symplectique sur un espace vectoriel réel peut être vue comme la partie imaginaire d'une forme hermitienne sur V muni d'une structure complexe.
Alors :
Note : Dans le livre de Michèle Audin, il est rapporté un résultat de Sévennec établissant un difféomorphisme de I(V) sur un ouvert de l'espace des matrices symétriques.
Sous-espaces d'un espace symplectique
On a ainsi plusieurs cas particuliers :
L'orthogonal d'un hyperplan H est une droite D. L'orthogonal de D, à savoir H, doit contenir D. Autrement dit, l'orthogonal de H est contenu dans H : tout hyperplan est nécessairement coisotropique.
Réduction symplectique
Si W est un sous-espace coisotropique de V, alors ω induit une forme symplectique sur l'espace quotient .